机器人4大控制方式,你知道几种?

      目前机器人在市场的大环境下使用最多的当属工业机器人,也是最成熟完善的一种机器人,而工业机器人能够得到广泛应用,得益于它拥有的多种控制方式。 
      机器人控制可以分为关节空间的控制笛卡尔空间的控制。对于串联式多关节机器人,关节空间的控制是针对机器人各个关节的变量进行的控制,笛卡尔空间控制是针对机器人末端的变量进行的控制。
     按照控制量的不同,机器人控制可以分为:位置控制、速度控制、加速度控制、力控制、力位混合控制和振动控制等。
     按作业不同,可主要分为点位控制方式连续轨迹控制方式力(力矩)控制方式智能控制方式四种控制方式!这4种控制方式功能分别都有哪些?


01、点位控制方式(PTP)

图片


      这种控制方式在机电一体化领域和机器人行业有广泛的应用!对工业机器人末端执行器在作业空间中某些规定的离散点上的位置进行控制。在控制时,只要求工业机器人能够快速、准确地在相邻各点之间运动,对达到目标点的运动轨迹则不作任何规定。

     定位精度和运动所需的时间是这种控制方式的两个主要技术指标。这种控制方式具有实现容易、定位精度要求不高的特点,因此,常被应用在上下料、搬运、点焊和在电路板上安插元件等只要求目标点处保持末端执行器位姿准确的作业中。这种方式比较简单,但是要达到 2~3um 的定位精度是相当困难的。



02、连续轨迹控制方式(CP)


      CP控制是对工业机器人末端执行器在作业空间中的位姿进行连续的控制,中间点的速度不为0,连贯运动,通过速度前瞻的方式获得每个点的速度大小。一般连续轨迹控制主要都用到了速度前瞻的方法:前向速度限制、转角速度限制、回溯速度限制、最大速度限制、轮廓误差速度限制。

      这种控制方式要求其严格按照预定的轨迹和速度在一定的精度范围内运动,而且速度可控、轨迹光滑、运动平稳,以完成作业任务。

      工业机器人各关节连续、同步地进行相应的运动,其末端执行器即可形成连续的轨迹。这种控制方式的主要技术指标是工业机器人末端执行器位 姿的轨迹跟踪精度及平稳性,通常弧焊、喷漆、去毛边和检测作业机器人都采用这种控制方式。


03、力(力矩)控制方式

      随着机器人应用边界的不断拓宽,单单靠视觉赋能已经满足不了复杂的实际应用,此时就必须引入力/力矩控制输出量,或者将力/力矩作为闭环反馈量引入控制。
       在进行装配、抓放物体等工作时,除了要求准确定位之外,还要求所使用的力或力矩必须合适,这时必须要使用(力矩)伺服方式。这种控制方式的原理与位置伺服控制原理基本相同,只不过输入量和反馈量不是位置信号,而是力(力矩)信号,所以该系统中必须有力(力矩)传感器。有时也利用接近、滑动等传感功能进行自适应式控制。



04、智能控制方式


 机器人的智能控制是通过传感器获得周围环境的知识,并根据自身内部的知识库作出相应的决策。采用智能控制技术,使机器人具有较强的环境适应性及自学习能力。

智能控制技术的发展有赖于近年来人工神经网络、基因算法、遗传算法、专家系统等人工智能的迅速发展。这种控制方式模式,让工业机器人真正有了“人工智能”味道,不过也是最难控制得好的,除了算法外,也严重依赖于元件的精度。
近几年,智能控制技术进步明显,模糊控制理论和人工神经网络理论以及两者的融合都大大提高了机器人的速度和精度。主要应用如多关节机器人跟踪控制、月球机器人控制、除草机器人控制、烹饪机器人控制等。
有了智能控制技术的加持,工业机器人才真正智能化起来,不过也是最难实现的,对算法、元件依赖严重。




405 Method not allowed